Positional Cues in the Drosophila Nerve Cord: Semaphorins Pattern the Dorso-Ventral Axis

نویسندگان

  • Marta Zlatic
  • Feng Li
  • Maura Strigini
  • Wesley Grueber
  • Michael Bate
چکیده

During the development of neural circuitry, neurons of different kinds establish specific synaptic connections by selecting appropriate targets from large numbers of alternatives. The range of alternative targets is reduced by well organised patterns of growth, termination, and branching that deliver the terminals of appropriate pre- and postsynaptic partners to restricted volumes of the developing nervous system. We use the axons of embryonic Drosophila sensory neurons as a model system in which to study the way in which growing neurons are guided to terminate in specific volumes of the developing nervous system. The mediolateral positions of sensory arbors are controlled by the response of Robo receptors to a Slit gradient. Here we make a genetic analysis of factors regulating position in the dorso-ventral axis. We find that dorso-ventral layers of neuropile contain different levels and combinations of Semaphorins. We demonstrate the existence of a central to dorsal and central to ventral gradient of Sema 2a, perpendicular to the Slit gradient. We show that a combination of Plexin A (Plex A) and Plexin B (Plex B) receptors specifies the ventral projection of sensory neurons by responding to high concentrations of Semaphorin 1a (Sema 1a) and Semaphorin 2a (Sema 2a). Together our findings support the idea that axons are delivered to particular regions of the neuropile by their responses to systems of positional cues in each dimension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of dorso‐ventral polarity by the nerve cord during annelid regeneration: A review of experimental evidence

An important goal for understanding regeneration is determining how polarity is conferred to the regenerate. Here we review findings in two groups of polychaete annelids that implicate the ventral nerve cord in assigning dorso-ventral polarity, and specifically ventral identity, to the regenerate. In nereids, surgical manipulations indicate that parapodia develop where dorsal and ventral body w...

متن کامل

The Sox-domain containing gene Dichaete/fish-hook acts in concert with vnd and ind to regulate cell fate in the Drosophila neuroectoderm.

In the Drosophila embryonic central nervous system, neural stem cells, called neuroblasts, acquire fates in a position-specific manner. Recent work has identified a set of genes that functions along the dorsoventral axis to enable neuroblasts that develop in different dorsoventral domains to acquire distinct fates. These genes include the evolutionarily conserved transcription factors ventral n...

متن کامل

Induction of secondary axis in hydra revisited: New insights into pattern formation

In 1909, several years before the famous `Organizer’ experiments of Spemann and Mangold, Ethel Browne demonstrated induction of a secondary axis in hydra by grafting a hypostome. Based on this and subsequent work, in the late sixties, Lewis Wolpert proposed the theory of morphogen gradients and positional information. We have studied secondary axis induction by hypostome and foot tissue using t...

متن کامل

Wingless, decapentaplegic and EGF receptor signaling pathways interact to specify dorso-ventral pattern in the adult abdomen of Drosophila.

Adult abdominal segments of Drosophila are subdivided along the dorso-ventral axis into a dorsal tergite, a ventral sternite and ventro-lateral pleural cuticle. We report that this pattern is largely specified during the pupal stage by Wingless (Wg), Decapentaplegic (Dpp) and Drosophila EGF Receptor (DER) signaling. Expression of wg and dpp is activated at the posterior edge of the anterior com...

متن کامل

Commissural axon navigation: Control of midline crossing in the vertebrate spinal cord by the semaphorin 3B signaling

The mechanisms governing the navigation of commissural axons during embryonic development have been extensively investigated in the past years, often using the drosophila ventral nerve cord and the spinal cord as model systems. Similarities but also specificities in the general strategies, the molecular signals as well as in the regulatory pathways controlling the response of commissural axons ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2009